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A numerical study is made of the development with time of the two-dimensional flow 
of a viscous, incompressible fluid around a circular cylinder which suddenly starts 
rotating about its axis with constant angular velocity and translating a t  right angles 
to this axis with constant speed. The governing partial differential equations in two 
space variables and time are reduced to  sets of time-dependent equations in one space 
variable by means of Fourier analysis. By truncating the Fourier series to  a finite 
number of terms, a finite set of differential equations is solved to give an approximation 
to the theoretical flow. The solutions are obtained by numerical methods. Results 
are given for the initial development with time of the asymmetrical wake at the rear 
of the cylinder at Reynolds numbers R >, 200, based on the diameter of cylinder, and 
at small rotation rates. The detailed results show the formation of a Kirman vortex 
street. The time development of this separated flow is compared in detail at R = 200 
with recent experimental results. The details of the formation and movement of the 
vortices behind the cylinder and the velocity profiles in several locations are virtually 
identical in the experimental and theoretical studies. The variations with time of the 
lift, drag and moment exerted by the fluid on the cylinder are determined both by 
calculations and by means of approximate analytical expressions. The agreement 
between these results a t  small times is excellent. 

1. Introduction 
Unsteady flow around a cylinder which is suddenly started from rest in a viscous 

fluid has long been of interest both experimentally and theoretically. Many properties 
of such flows are described in standard works such as Prandtl8z Tietjens (1934) and 
Batchelor (1970) and details of recent work are given by Telionis (1981). In the 
present paper we shall study the two-dimensional flow generated by an infinitely long 
circular cylinder of cross-sectional radius a which translates with uniform velocity U 
a t  right angles to  its axis and rotates about this axis with constaiit angular velocity wo. 
A frame of reference which translates with the cylinder but does not rotate is 
employed and the motion is assumed to be governed by the Navier-Stokes equations 
for incompressible fluids. It is further supposed that the uniform translation and 
rotation of the cylinder start impulsively a t  the same instant. There are two basic 
parameters in the problem. One is the Reynolds number, defined as R = 2Ua/v ,  where 
v is the coefficient of kinematic viscosity of the fluid. The second is the parameter 
a = awo/U,  which is a dimensionless measure of the speed of rotation of a point on 
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the surface of the cylinder relative to its speed of translation. When a = 0 the motion 
is symmetrical about the direction of translation; this case has received a considerable 
amount of previous attention. 

When a is non-zero many important effects which are otherwise absent appear. 
These include the production of a lift force and moment on the cylinder and a 
circulation around it. Tollmein (1924) investigated the initial flow following an 
impulsive start in such a case by an extension of the results of boundary-layer theory 
used by Blasius (1908) in the symmetrical case a = 0. The first terms of an expansion 
in powers of the time were obtained. This expansion was later developed further for 
the case a = 0 by Goldstein & Rosenhead (1936) but this non-zero-a case does not 
appear to have been considered. Some attention is given to  the expansion method 
in the present paper following the methods of Collins & Dennis (1973~)  for the case 
a = 0. 

The majority of the investigations so far made for non-zero a are for the problem 
of steady flow. For this problem there is associated with each value of a a circulation 
round a sufficiently large contour surrounding the cylinder which may not exist in 
the unsteady flow until sufficient time has elapsed for circulation to diffuse across 
the contour from the cylinder. Glauert (1957a, b )  considered the steady flow for high 
R and both large and small values of a on the basis of boundary-layer theory and 
was able to correlate the circulation round a contour a t  the edge of the boundary 
layer with a. Wood (1957) and Moore (1957) obtained results generally consistent with 
those of Glauert from their steady-state theoretical work. Moore (1957) investigated 
the problem for large a and finite Reynolds numbers. I n  all of these investigations 
it was possible to determine the lift on the cylinder, which was found to increase with 

There has also been a small amount of numerical work in the case of steady flow 
past a rotating circular cylinder. The earliest numerical solutions of the Navier-Stokes 
equations for non-zero a were given by Thoman & Szewczyk (1966). More recent 
calculations were given by Ta Phuoc LOC (1975) a t  R = 5 and 20 by solving the 
Navier-Stokes equations numerically within a finite region surrounding the cylinder 
subject to a boundary condition on the perimeter of the region chosen to be consistent 
with external potential flow. Results for the steady-state flow field were obtained 
together with values of the lift and drag coefficients for small values of a. Ingham 
(1983) has reconsidered the numerical solution for the same cases R = 5 and 20 with 
0 < a < 0.5 using several possible boundary conditions a t  finite but large enough 
distances from the cylinder. The calculated streamline patterns were similar to those 
of Ta Phuoc LOC (1975) but there were considerable discrepancies in the lift and drag 
coefficients. Moreover, Ingham’s own calculated lift coefficients vary considerably 
with the form of external boundary condition assumed, particularly for a = 0.5, with 
a lesser but noticeable corresponding variation in the drag coefficient. 

The unsteady development of flow past a rotating circular cylinder is of interest 
for several theoretical reasons. In  the first place i t  may give some insight into the 
phenomenon of unsteady separation in which, following the sudden start of the 
motion from rest, a recirculating region develops within the attached boundary layer 
on the cylinder surface, eventually followed by breakaway of this region to  form a 
recirculating wake. The situation has been discussed theoretically by Riley (1975) in 
a general way. In  the present problem separation occurs from the moving wall when 
01 is non-zero in a more complicated way than when a = 0 and the condition for 
separation is not the simple condition of vanishing wall-shear stress. Unsteady 
separation has been discussed by Sears & Telionis (1975), who proposed that the model 

a .  
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based on the original work of Rott (1956), Sears (1956) and Moore (1958) is 
appropriate. In  this model the point of separation is defined as the point where both 
the skin friction and the fluid velocity become zero within the attached boundary 
layer as i t  appears to an observer moving with the separation. Sears & Telionis (1975) 
and Williams (1977) have attempted to  substantiate this criterion ; they indicate the 
velocity profiles and streamlines to  be expected a t  separation. Inoue (1981) has 
discussed the differences between unsteady separation at walls moving in the 
upstream and downstream directions and suggests that the separation criterion of 
Rott (1956), Sears (1956) and Moore (1958) appears to be satisfied for downstream- 
moving walls, but for upstream-moving walls there are cases in which i t  does not seem 
to hold. I n  the present problem we have both upstream- and downstream-moving 
walls on account of the rotation of the cylinder relative to  the translating frame of 
reference. 

One of the essential objects of the present study is to  obtain numerical solutions 
of the Navier-Stokes equations which can be correlated not only with theoretical 
studies but also with available experimental data. Experimental studies of various 
steady and unsteady flows related to the present problem have been given by 
Prandtl (1925), Prandtl & Tietjens (1934), Ludwig (1964), Taneda (1977) and 
Koromilas & Telionis (1980), but by far the most extensive work of relevance is the 
recent study of Coutanceau & MBnard (1985). I n  these experiments a circular cylinder 
starts rotating and translating at the same instant at constant rates of rotation and 
translation which are maintained during the subsequent motion. The development 
of the motion with time is observed for various values of R 2 200 and for a < 3.5 
using visualization techniques which follow previous work of Coutanceau & Bouard 
(1977a, b )  and Bouard & Coutanceau (1980) in the case a = 0. 

In  the present paper numerical solutions of the Navier-Stokes equations are 
obtained under the same conditions as the experimental study of Coutanceau & 
MBnard (1985). The numerical techniques employed are a direct extension of those 
which were used by Collins & Dennis (1973a, b )  in the case a = 0. Modified polar 
coordinates (6 ,  O ) ,  where 6 = In (./a) in terms of the radial distance r ,  are taken with 
the origin a t  the centre of the cylinder in the translating frame. The stream function 
and scalar vorticity are used as dependent variables. The two equations governing 
these functions are reduced to sets of partial differential equations in the variable 
6 and the time by employing Fourier series expansions in the angular coordinate 8. 
An approximation to  the flow is then obtained by solving a finite number of these 
equations. The Fourier series are full-range series in 0 < 8 < 2~ rather than the 
half-range series in 0 < 8 < K employed by Collins & Dennis for the symmetrical case 
a = 0. Full-range Fourier series have previously been used by Dennis & Staniforth 
(1971), Staniforth (1973) and Patel (1981) in formulating numerical techniques for 
solving problems with no special symmetry properties in 0 < 8 < 271. A preliminary 
account of the method in the present problem was given by Badr & Dennis (1981). 

The present calculations are confined to  the small rotation rates a = t and 1.  Here 
the interaction between the effects of rotation and translation is relatively small and 
it is possible to  achieve accurate results without excessive computational labour. 
Detailed results are given for R = 200 and 500; in both cases the calculations exhibit 
the early stages of the formation of a Karman vortex street. Such an occurrence is 
not new in numerical solutions. A Karman vortex street was, for example, generated 
by Patel (1981) in his study of flow past an elliptic cylinder. The new point in the 
present results is the exceptionally good quantitative comparisons with the 
experimental results of Coutanceau & MBnard a t  R = 200, not only in the detailed 
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formation of the wake but also in the development with time of velocity profiles and 
various other properties of the flow. In  fact, the general evidence of the comparisons 
is that the experimental and numerical treatments of the problem in this case are 
virtually identical and give the same physical development of the flow in every 
respect. 

2. Governing equations and method of solution 
At time t = 0, an infinitely long circular cylinder suddenly starts to move in a 

viscous, incompressible fluid with constant speed U at  right angles to its axis and 
a t  the same instant starts to  rotate about its axis with constant angular velocity wo. 
A suitable frame of reference is used in which axes translating with the cylinder but 
fixed in direction are taken in the plane of a circular cross-section with origin 0 a t  
the centre. Modified polar coordinates ( & 8 )  are used, where 6 = In ( r l a )  and a is the 
radius of the cylinder. Thus the cylinder is situated a t  6 = 0 and the domain of the 
solution is 6 2 0, 0 < 0 < 27r, with 8 = 0 in the downstream direction. 

The motion is two-dimensional and may be described in terms of the usual two 
simultaneous equations satisfied by the stream function and the scalar vorticity. 
Dimensionless functions @ and f: are used, related to the dimensional stream function 
@* and scalar vorticity c* by the equations @* = Ua@, f:* = - Uf:/a. The dimension- 
less radial and transverse components of velocity ( u , v )  obtained by dividing the 
actual components by U are then given by 

and the function f: is defined by 

The equations of motion can be expressed as the two equations 

Here T = Ut/a and R is the Reynolds number defined by R = 2aU/v, where v is the 
coefficient of kinematic viscosity. 

Equations (3) and (4) are those considered by Collins & Dennis (1973a, b )  in the 
case of sudden translation of a circular cylinder without rotation. Here the rotation 
of the cylinder enters through the parameter a = m 0 / U  in the boundary conditions, 
which may be stated as 

and 

@ = O  -=-a when g = O ,  
’ a6 

The sets of conditions ( 5 )  and (6) must be satisfied for all 8 such that 0 < 0 < @ and, 
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moreover, all of the dependent variables in the flow domain must be periodic 
functiom of B with period 2%. Thus, in particular, 

(7) 

In the c&8e a = 0 considered by Collins & Dennis ( 1973a, b) the motion is symmetrical 
about B = 0, t3 = x .  Then the functions $ and C are odd functions of 8 which vanish 
on 8 = 0, x.  Here the problem is more complicated because, although the conditions 
(7) ensure that the velocity components u and v are also periodic functions of 8 with 
period 2a, care must be exercised to ensure that the pressure in the fluid is likewise 
periodic in 8; this will be considered shortly. 

Collins & Dennis (1973a, b) used Fourier-series substitutions for @ and 6 to reduce 
(3) and (4) to sets of partial differential equations in 5 and 7 .  These were solved by 
exact analysis for small values of 7 (1973~) and by numerical methods for larger values 
of 7 (19733). In  the present c&8e the Fourier series are of the form 

M, e+ 2 ~ ,  7 )  = w, e,7) ; at, e + 2~ 7 )  = m , e ,  7) .  

00 

Y(E,t3,7) = Wo(597) + Z (Gn(57 7 )  COB ne + gn(5 ,7 )  sin &I. (8b) 
n-i 

The equations governing the various functions in (8) are obtained by substitution 
in (3) and (4). It is found from (4) that 

and 

asFn -- nZFn = e8fQn 
ag" 

(n = 0,1,2,  ...). 

Boundary conditions for (9) follow from (5) and (6). They are that at the cylinder 
surface 

&(0,7) = 0; Fn(0,7) =fn(0,7) = 0 (n = 1,2, ...), (10a) 

( l o b )  _-  aFn afn a4 
35 a5 ag 

--2a; - = - = O  when [ = O  ( n =  1,2, ...), 

and as 5+00 

e-fl$+O; e-fFn+O, e-ffn+sn (n = 1,2, ...), ( 1 1 4  

where 8, = 1;  13, = 0 (n = 2,3, ...). (12) 

Q o + O ;  Gn+O, gn+O ( n = . l , 2  ,... ). (13) 

It also follows from (6) that as (+ 00 

The conditions (13) are required in the numerical solution of (3) and it may now 
be shown, following Collins & Dennis (1973a, b), that (10) and (11) can be combined 
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to give further sets of conditions on the functions Q, and 
the sets of equations derived from (3). The conditions are 
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JOm e2f Go([, 7 )  d[ = 2a, 

gn to be used in solving 

(144 

(144 
rco 1 (n= 1,2, ...), 
J e(2-n)fGn(E, 7 )  dg = 0, 

0 

rao 

where 6, has the significance in (12). The sets of equations (14b, c) are obtained by 
multiplying (9), excluding n = 0, by e-"f and integrating both sides from 5 = 0 to 
5 = co. The results readily follow after some integration by parts of the term involving 
the second derivative on the left-hand side of each typical equation together with 
use of the conditions (10) and (1 1). The result (144 further follows directly from the 
application of this procedure to the member of (9a) with n = 0 and it is merely an 
expression of the fact that the circulation round a large enough contour surrounding 
the cylinder must vanish for all time. Some further discussion of this point is 
worthwhile in view of the numerical procedure adopted in the present paper. 

The motion is started suddenly from rest; thus the initial circulation round a 
circular contour centred at the cylinder and of large enough radius 6 = 5, is zero. 
If we evaluate the circulation K([ , ,T )  round this contour using (8a) then 
K = -n(aF,/aE)l;,gm and it follows that a&/ag = 0 for E >, Em, where 5, defines the 
contour. Thus (14a) is established for any value of 7 and we can replace the upper 
limit by Em at any 7 for which no vorticity has yet passed across 5 = 5,. Moreover, 
the satisfaction of (14a) is the required condition to ensure that the pressure in the 
fluid is periodic with period 2n in 8. We substitute (8) in (3) and integrate with respect 
to 0 from 0 = 0 to 8 = 2x ,  which gives 

If now I (& 7 )  = jo5 eaz Go(z, 7 )  dz 

and it is assumed that the summation in (15) vanishes as g-. co by (13), integration 
of (15) from i$ = 0 to f = co gives 

Now if p(g,f l ,  7 )  denotes the pressure in the fluid andp,(8,7) denotes its value at E = 0 
it is easily shown that 

and hence that 

for all values of 6. 
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It follows that, provided (14a) is satisfied for all 7 ,  i.e. that there is never any 
circulation round a sufficiently large contour, and that (15) is satisfied along with all 
the necessary boundary conditions, then 

G i ( 0 , ~ )  = 0 (19) 

for all 7 and consequently from (18) the surface pressure remains periodic. Since the 
pressure at any point in the fluid can be obtained from the surface pressure by 
integration of the component momentum equation in the radial direction and $, 5 
have themselves been determined to  be periodic in 8 with period 2n, it  follows that 
the pressure is everywhere periodic with period 2n. All the conditions of the problem 
are therefore satisfied. In  this sense we consider the satisfaction of (14) as a very 
important part of the solution procedure. The condition (14a) must be satisfied to 
ensure that the circulation round a large contour is zero ; the conditions (14 b, c) ensure 
that the free stream is approached far from the cylinder, just as the satisfaction of 
(14c) gave this assurance in the symmetrical case considered by Collins & Dennis 
(1973 a, b). 

Equation (15) gives the equation to be satisfied by the function G0(E,7), and the 
sets of equations satisfied by G,(t ,  7 )  and g , ( t ,  7 )  for general integer values of n are 
obtained by substitution of (8) into (3), multiplication by COB ng or sin n5 respectively, 
and integration from 0 = 0 to 0 = 2n. The sets of equations which result are 

where 

and, in (21a, b), j = Im-nl, k = m + n  and sgn(m-n) is the sign of ( m - n )  with 
sgn (0)  = 0. This completes the theoretical description of the method of solution using 
the independent variables [ , 0 , 7 .  In theory one has to solve the sets of equations (9), 
(15) and (20) which are infinite in number; in practice one has to solve sufficient of 
them to give a satisfactory approximation to the flow. The boundary conditions for 
(9) are the sets of initial conditions (10). For (15) and (20) they are the conditions 
(13) and (14). The latter conditions ensure that the external-flow conditions (11) are 
satisfied and that the circulation round a contour surrounding the cylinder and with 
all points of it at infinite distance from the cylinder remains zero. 
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3. Determination of the initial flow 
The initial flow is governed by the usual boundary-layer theory in which a layer 

of thickness (7/R)i surrounds the cylinder following the sudden start. We therefore 
introduce variables appropriate to this layer defined by 

[ = A z ;  h = 2 - ,  G): 
and then transform all the appropriate equations using (22)  together with the scalings 
of variables 

9: 
f, = hfi, gn = - ( n  = 1 , 2 ,  ...) ; h 

F,=hF,*,  G , = -  G: ( n = 0 , 1 , 2  ,... ). 
h 

The equations (9) then become (suppressing all stars) 

a2F, 
-- n2h2Fn = eZArGn ( n  = 0 , 1 , 2 ,  ...); 

a22 

while (20)  become 

aG0 
a Z  

a2G, aGn aGn + 22 - + 2G, = 47 - + e-2Az h2n2G, + 2e-2Az 7 n  f, - e--Plz - 
aza az ar 

-27 e-2ArSn ( n  = 1,2, ...); (25a)  

a2gn a g n  agn aG0 

a22 az a7 az 
e-2Az - + 22 -+ 29, = 47 - + e-2Az A2n2g, - 2 e-2AZ 712 F, - 

- 2 ~ e - ~ ~ ~ T ,  ( n  = 1,2,  ...). (25b)  

Here AS, and T,, are simply (21)  with [ replaced by z and all unstarred functions f,, 
gn, F,, an replaced by starred functionsfi, g:, F,*, G: respectively. 

The boundary conditions utilized in conjunction with (24)  and (25)  are the 
transformed conditions (10) and (14) after ( 2 2 )  and (23)  have been applied. This gives 

and 

JOm elAz Go@, 7 )  d z  = 2a,  

( n  = 1 , 2 ,  ...). I Jam e(2-n)Az G,(z, 7 )  dz = 0, 

Jam e(2-n)Az g,(z, 7 )  dz = 28, 

(27)  
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With these conditions it is possible to construct a numerical method of solution of 
(24) and (25) for small values of 7.  It follows closely the method described by Collins 
& Dennis (19733) in the symmetrical case a = 0 and will be briefly summarized later. 
It is also possible to develop an exact solution in powers of 7 following the method 
of Collins & Dennis (1973~).  For small values of 7 this series solution can be used to 
check the numerical integrations, so we shall now give some details. 

If we put 7 = h = 0 for the start of the motion, (25) give 

The solutions of these equations satisfying (27) are 

4a 
Go@, 0) = - e-z', 

Kf 

4 
g,(z, 0) = - 6, e-l'; 7d 

G,(z, 0) = 0 

which yields the expression (for the starred function corresponding to (23)) 

{ ( z ,  8,0)  = 2x301 + 2 sin e) e+. 

The corresponding solutions to (24) obtained using (29) are easily found as 

I F, = -2a[z(1 -erfz)+n-:(I-e-"*)], 

F, = 0, 

f, = 2[z erfz-x--t(l-e-"')] 6,, 

which gives the initial expression for $(z,  0,O). 
From the initial expressions (29) and (31) we may now build up  a perturbation 

solution in powers of 7 following Collins & Dennis (1973a). The expansions for the 
stream function and vorticity can be made in terms of both h and 7. In  the first place 
we may expand $ and 6 in the form 

$ = $o+h$-,+h2$2+ ..., g =  go+hg,+h2g2+ ..., (3% b )  

where $m = y ? r n ( ~ ,  0 ,  T ) ,  Crn EE crn(z, 8 , r ) .  Then each $rn, Cm is expanded as a series of 
powers of 7 in the form 

OD OD 

where each of the coefficients ern,, Crnn consists of combinations of functions of z with 
periodic functions of 8. The process of derivation of these coefficients follows very 
closely the procedures described by Collins & Dennis (19734. It is not necessary to 
give the analysis in detail and we shall give only the expressions which have been 
derived for a few of the functions in the series in (33). The process of deriving 
analyticial expressions soon becomes quite complicated. Thus only the leading terms 
involved in (33) are obtained in order to check the numerical integration procedure of 
solving (24) and (25) at small values of 7. This numerical integration procedure 
gives a much more efficient way of calculating the flow as T increases. 

We can set up equations for the functions $ m n ( ~ , 8 ) ,  [mn(z ,O)  by following the 
procedures used by Collins & Dennis (1973~)  and similarly deduce boundary 
conditions to be satisfied by these functions. In  practice each of these functions can 
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be decomposed into a finite set of Fourier components in the coordinate 8 with 
coefficients which are functions of the variable z. The differential equations to be 
satisfied by the functions of z are easily found and the boundary conditions which 
these functions satisfy are deduced from (26) and (27). In other words, each of the 
Fourier coefficients appearing in (26) and (27) may be considered as a function of z, 
7 and also to be dependent on A. On expansion in powers of 7 and A and equating 
to zero each coefficient of A m F ,  we get the conditions which the Fourier components 
must satisfy. In  the following we shall identify only the composite functions. 

The leading terms coo and +oo of the expansions are given by means of (30) and 
(31). From these, following closely the analysis of Collins t Dennis (19734, it is found 
that col satisfies the equation 

a2c01 -+2~-- -2~~: , ,  ago1 = rl(z) cosO+r,(z) sin28, 
a22 az 

where 

and 

The solution satisfying all the boundary conditions is 

rl(z) = - 16ax-f e-z* [(2zz+ 1) erfz+2x-!z (e-z'- 1)- I], 

r2(2) = - 16x-f[(2z2+ 1 )  erfz+2x-f~ (e-z'- l)] e-z'. 

Sol = a[L(z) - 8 4  1 - erfz) +4x-4 e-zx] cos O + L(z) sin 28, 

where 
L(z) = A[e-" + x f z  erfz] + BZ- 42 erfz z 

+ tx-'2[3 e-'* - 41 e-" + 2n-' ~ ( 2 2 ~  - 1 )  e-zp erf z, 

and A = - 4 d ( l + @ - ' ) ,  B = 8(1 +in-'). 

Thus if R is large enough and 7 small, the solution is given approximately by 

(34) 

The corresponding surface vorticity is given by 

[ (0 ,e,7)  - 2x-!(a+2 sine)-[!$-h c0s8-A sin281 7 .  (36) 

The stream function can be obtained corresponding to (35) by integrating a2$/az2 = c 
twice subject to $ = a+/az = 0 at z = 0. 

In order to obtain the first term of the series for el, it is easily found that clo satisfies 
the equation 

(37) +2z-- ac1o - 8xfz(2z2-1)e-Z'(a+2sin8). 
a22 aZ 

The solution satisfying all the conditions is 

clo = r&) + r&) sin 8, 

r3(z )  = -a[ij(l -erfz)+n-12(222+ I )  e-z'], 

r4(z )  = I -erfz-2n-f2(222+ 1) e-z'. 

(38) 

where 

The stream function is found by integrating the equation 
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subject to the conditions 

at 2 = 0. 

This gives 
a 

= ;? [z2(erfz- i )+f  erfz-x-tz e+] 

++[z2(i -erfz)-+ erfz+7&(4-3 e-'')] sine. (40) 

Finally, the function Cll satisfies the equation 

where 

r5(z)  = 4a[-yx-iz e-Z'+xf(16z4+622-1) e-z*z erfz 
+2x-lz2(8z2- 1) e-2z'-~n-1z4 e-z2- 1 4 x 3 ~ ~  e-Z*+(l - e r f ~ ) ~ ] ,  

r&) = 4x-f e-z*[z(1624+622-1) erfz-(0+yx-')z 

+ 2x~z2(8z2 - 1) e-zx - 2z9( 1 + ~ x 3 z ) l  - 4 erfz( 1 - erfz). 

The solution of (41) is of the form 

Cll = P(z) cos 8+ Q ( z )  sin 28, (42) 

where P(z)  and Q(z )  satisfy ordinary differential equations which may be found by 
substitution of (42) into (41). Solutions for P(z) and Q(z)  which satisfy the boundary 
conditions can probably be found by analytical means, but the solutions would be 
very complicated and thus, from the known expressions for r&) and re@), they have 
been found numerically. It may be noted that the solutions are required to vanish 
as Z+CO and also to satisfy integral conditions derived from (27). Since there are 
two conditions for each function P(z) and Q(z) ,  numerical solutions can be found 
satisfying these conditions. The function @ll is then found by solving the equation 

-- a2@11 - gll + 22COl, 
a22 

(43) 

subject to the conditions @ll = a@ll/i3z = 0 when z = 0. 
It is found from the numerical solutions that 

(44) 

where the prime denotes differentiation with regard to z. We thus finally obtain an 
expression for the vorticity 

P(0) = 2.78444~, 

Q(0) = 6.5577, 

P(0) = -5.79901c~, 

Q'(0) = - 14.3122, 

Y(G 8,7) Coo + 7601 + U 1 o  + 7C11) (45) 

which is valid for small 7 and large R. It gives sufficient information obtained by 
analytical means to check the numerical solutions which are obtained by numerical 
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integration of (24) and (25) subject to the boundary conditions (26) and (27). In 
particular, we find for the surface vorticity 

g(0,8,7) - 4271 -t - +A) + (4x-t + A )  sin 8 + (2.7844A - Yx-3 )  a7 cos 8 

+ ~ 6 . 5 5 7 7 ~  - 47I -t(i +p)] sin 28. 646) 

Some further results derived from these solutions will be given subsequently. 

4. Numerical methods 
We need only briefly describe the methods used to solve numerically (24) and (25) 

subject to (27) and (28). Nevertheless, this is a very important part of the paper since 
the main results presented in the following section are based on these numerical 
solutions. All (25) are of the same form and we need only deal with a typical equation. 
Thus (25b) may be written 

where 

a2gn agn q,(z, 7 )  = e-"' - + 22 - + (2 - e-2A2 A2n2) gn + 27 e-2Az 
a22 a2 

Assuming all functions have been determined at time 7 -AT, we wish to advance the 
solution to the next time step 7.  This is done by a form of the Crank-Nicolson 
procedure. We integrate both sides of (47) from 7-AT to 7 at a given z, performing 
integration by parts on the integral on the left-hand side, and then replace the 
resulting integrals by trapezoidal quadrature formulae. This gives the result 

We now substitute for qn in (49) using (48) and then replace derivatives of g, with 
respect to z by central differences at the point z. It is then found that (49) is replaced 
by the equation 

where Az is the grid size in the z-direction. In this equation the terms A,, B, and 
C, on the left-hand side come from the first three terms on the right-hand side of 
(48) after expressing the derivatives in central differences ; they are easily identifiable. 
The term D,(z, 7 )  is given by 

which depends on various other functions through its dependence on T,(z ,T) .  
However, if we assume this dependence to be held constant at the stage a t  which 
(50) are solved for a particular function g,(z, T ) ,  these equations define a tridiagonal 
matrix which must be inverted to find g n ( z , 7 ) .  Similar sets of finite-difference 
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equations can be formulated corresponding to (25a) ,  which yield tridiagonal matrices 
to be inverted to determine G,(z, T ) ,  again assuming the right-hand sides to be held 
constant 8s each inversion ia made. 

The numerical solution procedure is therefore as fohws. At a given time 7 the 
solution already obtained at  7-AT for all the functions is used as a starting 
approximation. One then computes approximations to the functions g,(z, T ) ,  G,(z, 7 )  

in turn, for n = 1,2 ,  . . . , N. Each computation is performed by inverting the tridiagonal 
matrix defined by (50) with D,(z,T) calculated from (51), using the most recently 
available information, together with the corresponding set of equations for G,(z, 7 ) .  

After each ga(z,7)  or Gn(z,7)  is obtained, the function f,(z,~) or F,(z,T) which 
corresponds to it is computed by solving the corresponding equation (24)  subject to 
the appropriate initial conditions (26). The method used for this is the stable method 
given by Dennis & Chaag (1969) in which each equation of (24)  is factorized into a 
pair of first-order equations, one of which is integrated in the direction of increasing 
z and the other in the direction of z decreasing. The utilization of the boundary 
conditions in order to do this is explained in detail by Dennis & Chang. 

In  order for this method to be effective, it is necesmry for the integral conditions 
(27) to have been satisfied. It has been explained by Dennis & Chang that only under 
these circumstances can step-by-step methods be used. The integral conditions are 
satisfied as follows. For a given function gn(z ,7) ,  or likewise for G,(z,T), the set of 
finite-difference equations (50) is solved to determine values at z = Az, 2A2, . . . , zM - Az, 
where zM is the value of z at which the conditions g,(ZM, 7 )  = Q,(Z,,T) = 0 are 
assumed. The solution procedures require a knowledge of g,(O, 7 )  and G,(O, 7 ) .  The 
most recent approximations which have been obtained, say gkm)(O, 7 )  and Gjl")(O, T ) ,  

are used for these values. Then, after a solution has been obtained for a given g,(z, 7 )  

or G,(z, T ) ,  the appropriate integral condition (27) is satisfied by writing the integral 
as a quadrature formula and then determining a new estimate of gn(O, 7 )  or G,(O, 7 )  

from the new calculated set of values of g , ( z , ~ )  or G,(z,T) for z =I= 0 to satisfy this 
quadrature formula. This step is carried out immediately after (50) or its counterpart 
is solved, completing the approximation to g,(z, 7 )  or Gn(z, 7 )  for all z in 0 < z < z,. 

The whole iterative procedure is carried out until the difference between two 
successive iterates of all functions lies within certain limits. For each 7 the condition 
for g,(z, 7 )  was taken as 

~g""(z,7)-g(,m)(z,7)~ < 1 0 - 6  (52) 

for n = 1, ..., N and 0 < z < zM with a similar condition on G,(z, 7 ) .  When (52) is 
satisfied, all other functions have converged to limits to high accuracy. 

The solution at 7 = 0 is known from (30) and (31). The variation of vorticity with 
time is large initially and a quite small time step AT is necessary. Thus AT = was 
taken for the first 10 time steps. It was then increased to AT = for the next 10 
steps and then to AT = for the next 10. Finally AT = 0.025 was taken for the 
rest of the solution. The grid size in the z-direction was taken as Az = 0.05 at the start 
of the integrations and then increased to Az = 0.1 at 7 = 1.5. The values of grid sizes 
were to some extent chosen to be comparable with those used by Collins & Dennis 
(19733), since these were found to be satisfactory and were checked carefully. A few 
comparable checks of comparing results on different grids were made at one or two 
values of 7 during the present calculations. Moreover, the solutions obtained by fully 
numerical means are compared with the results obtained using expansions in powers 
of 7 ;  these comparisons indicate that the solutions are quite accurate. 

As in the case of cc = 0 considered by Collins & Dennis (1973b), very few terms of 
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the series (8) are required at  the start of the integrations and more terms are gradually 
added as 7 increases. In  fact, the maximum value of n is increased by unity every 
time a term preceding it in the series attains an absolute value of lo-* for any value 
of z in the range 0 < z < zM. Finally we may note that the numerical method 
described may be used to continue the solution for increasing 7 in terms of the original 
physical coordinate 6 when the boundary layer thickens. The same methods may be 
used to integrate (9) and (20) subject to the boundary conditions in terms of these 
coordinates. However in the present paper only cases for which R 2 200 are presented 
and i t  is possible to work in terms of the boundary-layer coordinate z over the entire 
range of 7 considered. The maximum value of z was zM = 8. 

5. Results and comparisons 
In this section we shall present results obtained for two Reynolds numbers, R = 200 

and 500, at two rotation speeds a = t ,  1. These will be given in terms of variation 
of streamline patterns and surface vorticity with time. Further results for the lift and 
drag coefficients and some other properties of the flow are given at higher Reynolds 
numbers. The results were computed by starting the solution with two terms in each 
of (8a) and ( 8 b )  and continuing the integrations until 7 reached 12.0, by which time 
33 terms (corresponding to N = 15) were used in each series. Although the case of 
relatively large values of a is of considerable interest in view of previous theoretical 
work, it is more difficult to maintain accurate results as a increases and so only results 
for small a are presented. 

We can obtain simple formulae for the lift and drag results at small values of 7 

by making use of formulae which may be found in order to calculate these same 
quantities numerically from the numerical solutions. If L and D are the lift and drag 
on the cylinder, the lift, drag and moment coefficients are defined by 

where M is the frictional moment. The lift and drag coefficients each consist of 
components due to the friction forces and the pressure. If we integrate these forces 
over the surface of the cylinder it is found that 

C -- D - JozK 

2 2= 
C,= - T i J o  

where the first integral in each gives the coefficient due to friction and the second 
that due to the pressure. The subscript denotes a value at the surface 6 = 0 and p: 
is the pressure coefficient 

We can evaluate the integrals in (54) using the series for <(E,  8 ’7) .  The 6rst integral 
in each of (54) is evaluated directly while the second of each is evaluated by 
integration by parts and then using the result 
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(C) 

FIQURE 3. Comparison of calculated and experimental instantaneous 
streamlines for R = 200; a = t :  (a) T = 3.0; ( b )  6.0; (c) 9.0. 
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Thus we obtain 

The numerical work of the present paper has been carried out in 
boundary-layer coordinates whereas the functions in (57) are those defined in (8b). 
We must therefore substitute the boundary-layer variables defined in (22) and (23) 
in evaluating (57); the modifications of (57) are obvious. It may be noted that the 
lift and drag coefficients depend only on g,, Q, and their derivatives. These functions 
are determined fairly accurately in the numerical process, which leads to accurate 
results for C, and C,. We may also obtain exact expressions for C, and C, valid at 
small values of 7 by making use of (46). It may be shown that the expression for p: 
iound from (56) using (46) is 

469 

(57a, b )  

terms of 

4 
Rh2 

p,* = -- [47c-~A(1+cost9)+~(8-hq2)(1-cos2~)-q1A~asin8], (58) 

where q1 = 5.79901, q2 = 14.3122. We can substitute directly from (46) and (58) into 
(54) to obtain expressions for the lift and drag coefficients which are valid for small 
7 .  It is found that 

C,  - -a[( 1.4498~ -+n-i) h + 0.6961nh2]. (60) 

From the same details of the initial solution it is found that the frictional-moment 
coefficient obtained by integration of the moment of the frictional shear stress on the 
cylinder around it is given by 

c, - fh-'(2lt--4-f4. 

The expressions (59)-(61) can all be used to check the results of the numerical 
integrations at small values of 7 ;  results of these checks will be given shortly. 

We shall now present the results of calculations for the cases R = 200, a = !j and 
a = 1 ; these may be compared with the recent experimental results of Coutanceau 
t MBnard (1985) for the same case. The experimental set-up is described in the paper 
cited. The start of the motion is virtually instantaneous and the development of the 
flow is visualized by a moving camera which accompanies the cylinder in its 
translational motion, in effect simulating exactly the translating frame of reference 
without rotation used in the present study. In  figures 1 and 2 we give the streamlines 
for the developing flow at various values of T for the respective cases a = f, 1. The 
corresponding flow visualizations of Coutanceau & MBnard (1985) are exhibited in 
their figures 6 and 9;  for continuity of their study with the present one we give, in 
figure 3, some selected comparisons for one case. It may be seen that the calcula- 
tions are virtually identical with the flow visualizations. Moreover some detailed 
quantitative comparisons can be made which indicate the precision of the agreement 
between theory and experiment. 

Coutanceau & MBnard have made a detailed study of the motion of the centres of 
the vortices which form a t  the rear of the cylinder and, ultimately detach into the 
wake during the motion. They have also studied the motion of the stagnation points, 
or saddle points, which form the points of closure of the vortices after their formation. 
Telionis (1981) indicates that these points are of some theoretical interest in studying 
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FIGURE 4. Paths of the centres C, and closure points S, of each of the first three vortices (i = 1,2,3) 
for R = 200 and (a) a = 4; (a) 1 .  The notation for C, and Si is that of Coutanceau & Mbnard (1985). 
The times correspond to: V, T = 1; V, 2; A, 3; A, 4; 0 , 5 ;  H, 6; 0,  7; +, 7.5; . ,8; *, 9. 

the nature of the flow at the onset of separation. In the present numerical study the 
motion of both the centres and the closure points of the vortices can clearly be seen 
in figures 1 and 2. After the vortices detach from the cylinder and move downstream 
they eventually open up and the closure points disappear. This phenomenon has been 
observed by Coutanceau & MBnard and is also clearly seen in figures 1 and 2. 

In figures 4 (a, b) are shown, for the respective cases a = + and 1, the paths of the 
centres C,, C, and C, of the vortices which have formed, in that order, from the start 
of the motion to the time at  which the calculations were terminated. The paths of 
the closure points S,, S ,  and S, which respectively correspond to these vortices are 
also shown. The time of termination of the calculations was 7 = 12.0 both for a = t 
and 1. The results may be compared with the experimental observations of Coutanceau 
& MBnard (1985, figures 13a and b) where i t  will be found that the comparisons are 
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FIQURE 5. Time development of velocity profiles and comparison with the experimental results of 
Coutanceau & MBnard (1985) for R = 200, a = 4. (a) z-component ofvelocity on 8 = 0. Experimental 
values: A, 7 = 1.0; A, 3.0; 0 , 5 . 0 .  Theoretical; curves-. (a) y-component of velocity on 8 = 0. 
Experimental values: A, 7 = 2.0; A, 4.0; 0, 6.0. Theoretical curves -. 

virtually identical in every respect. In the case of a = (figure 4a) the vortex C, forms 
first above the x-axis and then C, forms later, below the x-axis. After a while C, 
detaches and moves downstream. The associated stagnation (closure) point S, exists 
for a while and then vanishes somewhere just after 7 = 6 as the vortex opens up. After 
C,  has detached, the vortex C, moves up and grows (see figure l e ) .  It eventually 
detaches and passes downstream also but, before i t  does so, we find precisely the same 
almost discontinuous change of position of the closure point S, observed in the 
experiments. This sudden change in the position of 5, occurs between 7 = 7 and 8, 
exactly as in the experiments. After C,  has detached, two vortices appear almost 
simultaneously, one above the x-axis and the other below. We can denote them by 
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FIGURE 6. Time development of velocity profiles and comparison with the experimental results of 
Coutanceau & MBnard (1985) forR = 200, a = 1. (a) z-component of velocity on 0 = 0. Experimental 
values: 0,  7 = 1.0; A, 3.0; 0, 5.0. Theoretical curves -. ( b )  y-component of velocity on t9 = 0. 
Experimental values: w, 7 = 2.0; A, 3.0; 0, 5.0. Theoretical curves ---. 

Ci and C;l. They have formed in figure 3 ( c )  and gradually grow (see figure 1 ( g ) ,  and 
figure 6 (k) of Coutanceau & Mhnard). At this stage C, has passed further downstream 
and become quite large. Eventually C; and C: coalesce to form C, ; this is shown in 
figure 1 ( i ) ,  and figure 6(m)  of Coutanceau & M6nard. The same sudden change of the 
position of the closure point S, noted in the case a = occurs also in the case a = 1 
and is shown fairly clearly in figure 4 (b). 

The somewhat different behaviour in the cases a = ?j and 1 noted in the experiments 
of Coutanceau & MBnard is followed closely in the numerical results. In particular, 
we observe that the increase in the rate of rotation inhibits the formation of the lower 
vortex (below the z-axis). Then at 7 > 6 the new sequence of phenomena which occur 
in the vortex formation in this case is again identical in the theoretical and 
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0 

FIQURE 7. The time development of the x-component of velocity on 6' = 90" when R = 200 for (a )  
a = 4; ( b )  1.  Experimental results of Coutanceau & MBnard (1985): 0 ,  T = 1.0; ., 2.0; A, 4.0; 0,  
6.0. Theoretical curves -. 

experimental results. The tendency for the lower vortex not to form increases with 
increasing a. This is clearly shown in Coutanceau & MBnard's experiments. In  fact 
at a = 2.07 the vortex below the x-axis with centre C,  does not form at all in the 
time range r = 0-9 of the observations and for a = 3.25 no other vortex than the first, 
with centre C,, appears. The numerical calculations become more difficult as a 
increases and we have restricted the present study to a < 1. 

As a further check on the consistency of the experimental and calculated results 
for R = 200, the velocity profiles are compared in several locations. Figures 5(a ,  b) 
show the evolution with time of the x- and y-components of velocity, 21, and wy 
respectively, on the axis 8 = 0 to the rear of the cylinder for the case a = !j up to T = 6, 
and figures 6(a ,  b) give the corresponding results for a = 1. They may be compared 
with figures 17 (a, b) and 18 (a, b) of Coutanceau & MBnard (1985) which indicate a 
good measure of quantitative agreement. Some representative points taken from the 
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FIGURE 8. The time development of velocity profiles on the axis 
8 = x for the case R = 200: (a) a = 4; (b )  1. 

experimental study are shown in figures 5 and 6 to illustrate the degree of the 
quantitative comparison. In  figure 7 (a) we compare the x-component of velocity on 
the axis 8 = !jn with Coutanceau & MBnard’s experimental results for a = !j (given 
in their figure 19). There is a certain amount of scatter in the experimental results, 
particularly at the larger distances from the cylinder. Nevertheless the overall trends 
of the calculated and experimental results coincide quite well, and extremely well near 
the cylinder. The corresponding calculated results for a = 1 are given in figure 7 (b). 
Finally, in figures 8(a, b) some results are given for the y-component of velocity on 
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the axis0 = 180" whena = t ,  1.  They show thecustomary typeofboundary-layerdecay 
to a zero y-component of velocity outside the boundary layer with a rather slower 
decay and a thickening of the boundary layer as 7 increases. 

We shall now present some results for the case R = 500. No experimental 
observations are given for this case by Coutanceau & MQnard (1985) but some brief 
comparisons of their observations of instantaneous streamlines of the flow for 
R = 500, a = !j and 1 with the present calculations are noted by Badr et al. (1985). 
The calculated results given now are also for the two small rotation rates a = t and 1. 
The streamlines of the developing flow in these two cases are shown respectively 
in figures 9 and 10 for values of 7 up to 12.0, a t  which time the calculations were 
terminated. In both cases a separated region forms first a t  the surface of the cylinder 
above the x-axis (a% < 8 -c $) as in the case of R = 200. In the case a = a a second 
vortex forms in the region just below the x-axis soon after the formation of the first. 
They both grow until eventually the first detaches from the cylinder and passes 
downstream. The second continues to grow and ultimately detaches from the cylinder 
after the formation of two new vortices respectively above and below the x-axis near 
the cylinder (figure 99). These subsequently coalesce and then (figure 9k)  a new vortex 
is formed below the x-axis, after which the calculations were terminated. 

In  the case a = 1 the flow develops somewhat differently because of the higher rate 
of rotation. The main difference is that the second vortex has not formed even after 
the first vortex has detached (for T > 3) and moved well downstream. A good 
illustration of this situation may be seen at 7 = 5.5 (figure 10e) .  However soon after 
this two new vortices form together on the surface of the cylinder above the x-axis 
(in c 8 < in). The one nearest the x-axis then detaches and starts to move downstream 
(figure 10h). A t  7 = 8.0 the other vortex has not yet detached but now a new vortex 
has formed in the neighbourhood of 0 = 0. They ultimately coalesce and will detach 
to pass downstream as a single vortex. 

The variation of vorticity over the surface of the cylinder is shown up to 7 = 4 for 
the case a = t in figure 11 (a) and for the case a = 1 in figure 11 (b). It is clear from 
figure 11 (a) that the variation of wall skin friction in the separated region where the 
wall is moving upstream (0 < &J < 40") is different from that where the wall is moving 
in the downstream direction (320" < 0 < 360"). For the case illustrated by figure 
11 (a) (a = 4) separation has started in both of these regions at 7 = 2. Separation in 
the region of the upstream-moving wall is clearly accompanied by a reversal of wall 
skin friction very similar to that which occurs in the case a = 0 of symmetrical flow ; 
but the situation in the region near the downstream-moving wall is more complicated. 

In figures 12-15 some details of the variation of the lift and drag coefficients with 
T for the case R = 500 are given. The results obtained from the numerical solutions 
at small values of 7 are in good agreement with those obtained from the formulae 
(59)-(61). It may be noted that the friction drag calculated from the analytical and 
numerical solutions is in agreement for relatively large values of 7 ,  as indicated by 
the typical results in figure 13. The major departure of the results of the numerical 
integrations from those obtained from the series in powers of 7 as 7 increases is in 
the pressure drag; this shows itself in the curves for the total drag (figure 12). The 
typical results for the lift coefficient given in figure 14 suggest that C,  is directly 
proportional to a over the whole range of 7 considered, certainly for these small values 
of a. This is consistent with the analytical expression (60) which is valid for 
small 7 .  

The present numerical method can be used to integrate the equations of motion 
particularly well for high Reynolds numbers because of the employment of the 
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FIGURE 12. Variation of the drag coefficient with time at early times for R = 500: -, numerical 
solution for a = 1 ; , numerical solution for a = 1; ----, analytical solutions. 
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FIGURE 12. Variation of the drag coefficient with time at early times for R = 500: -, numerical 
solution for a = 1 ; , numerical solution for a = 1; ----, analytical solutions. 
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FIGURE 13. Variation of the frictional drag coefficient with time for the case R = 500, a = 1 : 
-, numerical solution ; ----, analytical solution. 

boundary-layer coordinates. Some results are given for the vorticity on the surface 
of the cylinder and the lift, drag and moment in the limiting case R-+ 00 for a = 1 ; 
these are shown in figures 16 and 17. In  figure 17 the results of the numerical 
computations are compared with the limiting results of the series solutions as R -+ 00 

obtained from (59)-(61). It is easily verified that the limiting forms of these equations 
when h = 0 are 
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FIGURE 14. Variation of the lift coefficient at small times for the caae R = 500: 
-, numerical solutions; ----, analytical solutions. 
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FIGURE 15. Variation of the moment coefficient at small times for R = 500, 
a = 1 : -, numerical solutions; ----, analytical solution. 

as R + a. The comparison is extremely good at small times. It is not possible to give 
streamlines of the flow because the calculations are carried out in boundary-layer 
coordinates and, since R is infinite, the actual physical distance from the surface of 
the cylinder to the edge of the boundary layer is zero. It is also not possible to 
integrate the boundary-layer equations to very large values of 7 in this case R+ 00 

and at the same time maintain reasonable accuracy. A similar situation was found 
by Collins & Dennis (1973b) in the symmetrical case a = 0. More recent work on this 
symmetrical boundary-layer problem such as that summarized, for example, by 
Cowley (1983) indicates that a singularity develops after a fmite value of 7 ;  it is 
extremely likely that a similar situation occurs in the present case. 
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FIGURE 16. Evolution of the vorticity distributions on the surface of the cylihder at 
for the limiting case R+ when a = 1 : -, numerical solution; 0,  analytical 
7 = 0.2. 

early times 
solution at 

FIGURE 17. The variation of lift, drag and moment coefficients at early times for the limiting 
case R + m  when a = 1 :  ----, analytical solution; -, numerical solution. 

In all cases of the flow which have been studied in the present paper there is one 
stagnation point in the fluid which forms soon after the start of the motion and then 
moves to a position which remains approximately stationary with time. This is the 
point near the upstream wall of the cylinder for y > 0 which is clearly shown for the 
case R = 200 in figures 1 and 2. In this case the experiments of Coutanceau & Mhard 
(1985) also show clearly the formation of this stagnation point and also the fact that 
after some preliminary movement its position subsequently remains constant with 
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a = 0.5 a =  1.0 

r l a  

.023 

.027 

.030 

.034 
,037 
,041 
,045 
.045 

80 

125.1 
129.6 
132.3 
133.5 
134.5 
134.6 
134.7 
134.6 

r l a  
1.044 
1.054 
1.065 
1.078 
1.091 
1.101 
1.106 
1.102 

80 

128.1 
134.4 
138.0 
139.7 
140.2 
139.4 
136.4 
136.5 

TABLE 1. Location of the front stagnation point for the cases of R = 200, a = 0.5 and 1 .O 

time. I n  the case R = 200 the present calculations agree extremely well with the 
measurements reported by Coutanceau & MQnard. For example, for a = 1 they report 
that the distance of this stagnation point radially from the cylinder surface stabilizes 
a t  about 0.1 radii for T 3 2 and that as r increases from about T = 2 to  T = 8 the 
angular coordinate of the stagnation point decreases from about 0 = 137' to  0 = 131'. 
Some results obtained from the present calculations are shown in table 1. 

Finally, we may restate the conditions which have been assumed for the flow 
outside the boundary layer and near wake in the present calculations. At all stages 
of the motion a contour of sufficiently large radius surrounding the cylinder has been 
taken such that, a t  the time of termination of the calculations, the circulation round 
this contour remains zero, as i t  was a t  the start. The zero circulation has been enforced 
on the solution by satisfying (14) ,  in particular (14a) .  The satisfaction of these global 
conditions is believed to be a more appropriate method than satisfying a condition 
imposed at the edge of the boundary layer since they are not dependent upon 
conditions enforced at one particular location of 6.  The work of Ingham (1983) in the 
case of steady flow past a rotating cylinder shows quite clearly how properties 
calculated from the solution can vary considerably depending upon the assumptions 
for the external flow. In  the case of steady flow there is, of course, a circulation round 
a contour surrounding the cylinder and at large distances from it. The problem of 
specifying this circulation is avoided in the present work ; in any case the solutions 
presented do not tend to a steady state. Nevertheless the imposition of boundary 
conditions in the numerical procedure which ensure that all the necessary conditions 
of the problem are satisfied, such as the required periodicity of the pressure, seems 
basic to the work. Similar problems do not usually arise in analytical methods. 
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